Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dev Biol ; 490: 144-154, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35988717

RESUMO

Since empty-spiracles (ems) was identified and characterized in Drosophila melanogaster as a head-gap gene, several studies have been carried out in other insect orders to confirm its evolutionary conserved function. Using the blood-sucking bug Rhodnius prolixus as biological model, we found an ems transcript with three highly conserved regions: Box-A, Box-B, and the homeodomain. R. prolixus embryos silenced by parental RNAi for two of these ems conserved regions showed both maternal and zygotic defects. Rp-emsB fragment results in early lethal embryogenesis, with eggs without any embryonic structure inside. Rp-emsB expression pattern is only maternally expressed and localized in the ovary tropharium, follicular cells, and in the unfertilized female pronucleus. Rp-emsA fragment is zygotically expressed during early blastoderm formation until late developmental stages in two main patterns: anterior in the antennal segment, and in a segmentary in the neuroblast and tracheal pits. R. prolixus knockdown embryos for Rp-emsA showed an incomplete larval hatching, reduced heads, and severe neuromotor defects. Furthermore, in situ hybridization revealed a spatial and temporal expression pattern that highly correlates with Rp-ems observed function. Here,Rp-ems function in R. prolixus development was validated, showing that empty-spiracles does not act as a true head-gap gene, but it is necessary for proper head development and crucial for early embryo determination and neurodevelopment.


Assuntos
Rhodnius , Animais , Proteínas de Ligação a DNA/metabolismo , Drosophila melanogaster/genética , Feminino , Hibridização In Situ , Interferência de RNA , Rhodnius/genética , Rhodnius/metabolismo
2.
J Ethnopharmacol ; 247: 112263, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-31580944

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Cocoa extracts rich in polyphenols are used as potential agent for treating diabetes. Cocoa polyphenols have been proved to ameliorate important hallmarks of type-2 diabetes (T2D). They can regulate glucose levels by increasing insulin secretion, promoting ß-cell proliferation and a reduction of insulin resistance. In addition, epidemiological evidence indicates that consumption of flavonoid decreases the incidence of T2D. AIM OF THE STUDY: T2D is preceded by a prediabetic state in which the endocrine-metabolic changes described in T2D are already present. Since epidemiological evidence indicates that consumption of flavonoid decreases its incidence, we evaluated possible preventive effects of polyphenol-enriched cocoa extract on a model of prediabetes induced by sucrose. MATERIALS AND METHODS: We determined circulating parameters and insulin sensitivity indexes, liver protein carbonyl groups and reduced glutathione, liver mRNA expression levels of lipogenic enzymes, expression of different pro-inflammatory mediators, fructokinase activity and liver glycogen content. For that, radioimmunoassay, real-time polymerase chain reaction, Western blot, spectrophotometry, and immunohistochemistry were used. RESULTS: We demonstrated that sucrose administration triggered hypertriglyceridemia, insulin-resistance, and liver increased oxidative stress and inflammation markers compared to control rats. Additionally, we found an increase in glycogen deposit, fructokinase activity, and lipogenic genes expression (SREBP-1c, FAS and GPAT) together with a decrease in P-Akt and P-eNOS protein content (P < 0.05). Sucrose-induced insulin resistance, hepatic carbohydrate and lipid dysmetabolism, oxidative stress, and inflammation were effectively disrupted by polyphenol-enriched cocoa extract (PECE) co-administration (P < 0.05). CONCLUSION: Dietary administration of cocoa flavanols may be an effective and complementary tool for preventing or reverting T2D at an early stage of its development (prediabetes).


Assuntos
Cacau/química , Diabetes Mellitus Tipo 2/prevenção & controle , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Estado Pré-Diabético/tratamento farmacológico , Animais , Diabetes Mellitus Tipo 2/metabolismo , Sacarose Alimentar/efeitos adversos , Modelos Animais de Doenças , Humanos , Resistência à Insulina , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/uso terapêutico , Polifenóis/isolamento & purificação , Polifenóis/uso terapêutico , Estado Pré-Diabético/sangue , Estado Pré-Diabético/etiologia , Estado Pré-Diabético/metabolismo , Ratos , Triglicerídeos/sangue , Triglicerídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...